
The Impact of Environment Configurations on the Stability of
AI-Enabled Systems

Musfiqur Rahman
Concordia University
Montréal, Canada

musfiqur.rahman@mail.concordia.ca

SayedHassan Khatoonabadi
Concordia University
Montréal, Canada

sayedhassan.khatoonabadi@concordia.ca

Ahmad Abdellatif
University of Calgary

Calgary, Canada
ahmad.abdellatif@ucalgary.ca

Haya Samaana
An-Najah National University

Nablus, Palestine
hayasam@najah.edu

Emad Shihab
Concordia University
Montréal, Canada

emad.shihab@concordia.ca

Abstract
Nowadays, software systems tend to include Artificial Intelligence
(AI) components. Changes in the operational environment have
been known to negatively impact the stability of AI-enabled soft-
ware systems by causing unintended changes in behavior. However,
how an environment configuration impacts the behavior of such
systems has yet to be explored. Understanding and quantifying the
degree of instability caused by different environment settings can
help practitioners decide the best environment configuration for the
most stable AI systems. To achieve this goal, we performed experi-
ments with eight different combinations of three key environment
variables (operating system, Python version, and CPU architec-
ture) on 30 open-source AI-enabled systems using the Travis CI
platform. We determine the existence and the degree of instability
introduced by each configuration using three metrics: the output
of an AI component of the system (model performance), the time
required to build and run the system (processing time), and the cost
associated with building and running the system (expense). Our
results indicate that changes in environment configurations lead
to instability across all three metrics; however, it is observed more
frequently with respect to processing time and expense rather than
model performance. For example, between Linux and MacOS, insta-
bility is observed in 23%, 96.67%, and 100% of the studied projects
in model performance, processing time, and expense, respectively.
Our findings underscore the importance of identifying the optimal
combination of configuration settings to mitigate drops in model
performance and reduce the processing time and expense before
deploying an AI-enabled system.

CCS Concepts
• Software and its engineering→ Operational analysis; Em-
pirical software validation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2025, Istanbul, Türkiye
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Keywords
Instability, Open-source Software, SE4AI, AI-enabled Systems, Em-
pirical Software Engineering
ACM Reference Format:
Musfiqur Rahman, SayedHassan Khatoonabadi, Ahmad Abdellatif, Haya
Samaana, and Emad Shihab. 2025. The Impact of Environment Configu-
rations on the Stability of AI-Enabled Systems. In Proceedings of The 29th
International Conference on Evaluation and Assessment in Software Engineer-
ing (EASE 2025). ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 Introduction
With the recent advances and popularity in the field of Artificial
Intelligence (AI)—more specificallyMachine Learning (ML)models—
in solving numerous real-life problems, more and more software
systems are integrating such models as part of their pipeline [49].
Software systems are inherently complex and the issue of stabil-
ity in software systems has been previously investigated [11, 47].
In addition, any ML model is, at its core, probabilistic and, as a
result, suffers from uncertainty. [34, 43, 44]. The complexity of a
software system, combined with the nondeterministic nature of
an ML model, can make AI-enabled systems behave inconsistently
across different operational environments. In this study, the term
‘operational environment’ refers to any environment where an AI-
enabled system is built and/or served, such as development and
deployment environments. This inconsistent behavior introduces
instability—the phenomenon where a piece of software behaves dif-
ferently when the operational environment changes, even though
the internal software artifacts, such as code and input data, remain
the same. Such instability indicates low adaptability [1] of a system,
which is undesirable system behavior.

In practice, development and deployment environments may dif-
fer. The potential for a substantial difference between development
and deployment behavior, termed training/serving skew, has been
reported before [15, 59]. For example, an arbitrary face recognition
system that achieves an F1 score of, say 0.9, in the development
environment may not achieve a similar F1 score once deployed in
a different environment configuration. Therefore, understanding
how an ML model may behave differently after deployment com-
pared to its behavior in the development environment is a crucial
aspect of AI-enabled software development. Although the literature
has previously investigated the instability in the behavior of ML

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Rahman et al.

models from the ML algorithm perspective [39, 62], the developers
must also determine the degree of instability that can be introduced
due to environment configurations as well. Therefore, running the
system under different configuration settings should be an addi-
tional step before deployment of the system to determine whether
model performance varies significantly across configurations. As
demonstrated by the previous example, the probabilistic and uncer-
tain nature of ML models can introduce novel challenges affecting
different stages of the software development life cycle. The software
engineering research community has recently begun investigating
the challenges associated with the uncertain nature of AI-enabled
software systems. These challenges affect various aspects of the
development life cycle, including requirement elicitation [10], soft-
ware testing and quality assurance [30], and deployment [37].

As discussed above, the environment settings can vary from one
stage to another in the development life cycle. The choices made by
the developers regarding development environment settings, such
as operating systems, versions of a programming language, and
hardware configurations, can depend on many factors, including
developers’ experience, business needs, and existing environment
configurations of legacy systems. However, these choices may po-
tentially introduce instability in the prediction quality of AI/ML
models as “practitioners’ degrees of freedom” [60, 65], which is
a known issue in the field of applied statistics. However, in the
domain of software engineering, there is no existing work studying
the potential sources of instability in AI-enabled software from an
environment configuration perspective. We use the term ‘instabil-
ity’ as a quantitative measure throughout the study to assess the
extent to which an AI-enabled system behaves differently when
environment configurations change. We aim to achieve this goal
by experimenting with eight combinations of three environment
variables, namely operating system, Python version, and CPU ar-
chitecture. We conduct experiments on 30 open-source AI-enabled
projects using the Travis CI platform,measuring instability inmodel
performance, processing time, and expense. Specifically, we aim to
answer the following three research questions:

RQ1: (Operating System) How much instability is intro-
duced by changing the operating system in AI-enabled sys-
tems?We analyze whether variations in operating systems make
AI-enabled systems behave differently. We observed instability in
model performance across 23% of the projects between Linux and
MacOS whereas 20% of the projects show such instability between
Linux and Windows. Almost all projects show significant insta-
bility in processing time and expense between different operating
systems.

RQ2: (PythonVersion)Howmuchdoes changing the Python
version introduce instability in AI-enabled systems? Python
is the most frequently used programming language for AI-enabled
systems. Therefore, it is critical to investigate the effect of Python
versions on the behavior of AI-enabled systems. We found that
Python 3.6 and Python 3.7 consistently produce identical results
in all three metrics. However, between Python 3.7 and Python 3.8,
instability can be observed in about 17% of the projects in model
performance and 80% of the projects in both processing time and
expense.

RQ3: (CPU Architecture) How much does changing the
CPU architecture introduce instability in AI-enabled sys-
tems? We turn our focus from software-level configuration to
hardware-level configuration. We compare two CPU architectures
and find that over 93% of the projects show instability in processing
time and expense while only 20% of them vary in model perfor-
mance between AMD64 and ARM64 architectures.

Our findings imply that changes in configuration settings are
very likely to introduce significant instability in AI-enabled sys-
tems although the degree varies from project to project. Significant
instability in AI-enabled systems in processing time and expense is
more frequently observed than model performance. Determining
the best configuration settings for a project is an iterative process,
and developers should build and run their systems on different
settings to find the most optimized environment configuration for
the system.

In summary, this paper makes the following contributions:
• To the best of our knowledge, this is the first empirical study
on the instability of AI-enabled systems from the environment
configuration point of view.

• We provide empirical evidence behind the necessity of dev/prod
parity principle where development and production environ-
ments are kept similar as much as possible [36].

• We make our data and scripts available for reproducibility and
future research [5].
The rest of the paper is organized as follows. Section 2 covers

background and methodology. Sections 3–5 present findings for
each research question. Sections 6 and 7 discuss our results and
threats to validity. Section 8 reviews related work, and Section 9
concludes with a summary and future directions.

2 Methodology and Background
We use Travis CI—a widely used Continuous Integration (CI) plat-
form [35]—to run experiments across different operational configu-
rations. We chose Travis CI because it’s the most popular CI tool
among OSS developers for AI-enabled systems [57].

2.1 Environment Configurations in Travis CI
In this study, the three configuration variables we experiment with
are Operating System, CPU Architecture, and Python Version. We
choose to experiment with these three variables because the oper-
ating system is the core of any development environment where
a system is built and run, the CPU is the core of the hardware on
which a system is run, and the programming language is at the core
of development tech stack used for building a system. In our exper-
iment, we use the following list of options for each configuration
variable:

Operating System: Linux (version Ubuntu-Xenial 16.04), Ma-
cOS (version 10.14.4), and Windows (10 version 1803). We chose
these three operating systems because they are the most common
operating systems used in development stacks across the globe [2].
Within Linux, we experiment with three different distributions,
which are Ubuntu-Xenial 16.04, Ubuntu-Bionic 18.04, and Ubuntu-
Focal 20.04. We chose these three distributions because, during the
time we were running our experiments, these three distributions
were the latest Long Term Support (LTS) versions of the top three

The Impact of Environment Configurations on the Stability of AI-Enabled Systems EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

most recent Ubuntu distributions. For brevity, we will only use the
distribution name throughout the rest of the paper.

Python Version: 3.6, 3.7, and 3.8. We chose these three versions
because, during the time of our experiments, Python 3.7 was the old-
est version of Python that was being maintained [6]. Furthermore,
the majority of the projects in our dataset were developed using
Python 3.7 or older versions. We compare Python 3.7 against one
earlier (Python 3.6) and one later version (Python 3.8) so that fea-
tures of different versions are still comparable and not significantly
different from one another.

CPU Architecture: AMD64 and ARM64. We chose these two
architectures because they are commonly compared against each
other from a variety of points of view [12, 14, 58]. Furthermore,
a recent study shows that ARM64 architecture is considered an
alternative to traditional AMD64 architectures, which is gaining
interest among software developers [17].

We compare all configuration settings against a baseline con-
figuration to quantify the instability. The baseline configuration is
defined as Linux with Xenial distribution for the operating system,
AMD64 for the CPU architecture, and Python 3.7 for the program-
ming language. The reason behind this choice is that these were
the default values set by Travis CI at the time of conducting the
experiments. It is important to note that there is always one and
only one environment variable that is different from the baseline
configuration. We apply this condition to make sure that if there is
instability, it is due to the variable that is different from the baseline
and nothing else. A total of seven environment configurations are
selected to be compared with the baseline configuration as shown
in Table 1.

The configurations are defined in a .travis.yml file which is
written in YAML-based Domain Specific Language [3]. An example
of a typical .travis.yml file is shown in Listing 1 which defines a
build with two jobs each of which has three phases.

1 language: python

2 jobs:

3 include:

4 - name: Python 3.6 on Linux -Xenial

5 python: 3.6

6 os: linux

7 dist: xenial

8 arch: arm64

9 - name: Python 3.7 on Linux -Bionic

10 python: 3.7

11 os: linux

12 dist: bionic

13 arch: amd64

14 install:

15 - pip3 install --upgrade pip

16 - pip3 install -r requirements.txt

17 script:

18 - python3 src/train.py

19 - python3 src/test.py

20 after_success:

21 - echo "Successful."

Listing 1: An example of a typical .travis.yml file

We define the three key Travis CI terminologies below:
Job: A job is defined as an automated process that clones a repos-

itory into a virtual environment (VM). A job carries out a series of
phases.

Phase: A phase is one sequential step of a job. There are two
main Travis CI phases, namely, install and script. Installation of
any dependencies required to build a software project is performed
in the install phase whereas the script phase runs the build
scripts. Travis CI also supports three optional deployment phases:
before_deploy, deploy, and after_deploy. Custom commands
like after_success and after_failure can also be run as part of
a phase.

Build: A build is a group of jobs. By default, jobs in a build run
in sequence, although depending on one’s subscription plan, jobs
can be run concurrently.

The configuration settings of a VM are described using a set of
keywords. For instance, OS and language are two configuration-
related keywords. OS sets the Operating System of a VM for a
particular job whereas the language keyword is used to prepare
the VM by setting up tools of a specific programming language.
In Listing 1, Python is set as the programming language for the
project in line 1. Line 2 marks the beginning of the jobs block.
In this example, two independent jobs are defined. The first job
(line 4–8) will run on a VM with an ARM64 CPU and Linux-Xenial
distribution as the operating system. Python version 3.6 is installed
to run the Python scripts. Similarly, the second job (line 9–13) will
run on a VM where the operating system is Linux-Bionic and the
CPU architecture is AMD64. Python version 3.7 is used to run
the Python scripts. In both jobs, after the VMs are spun up, pip is
upgraded (line 15) and required libraries are installed (line 16). Once
all the dependencies are installed, two Python scripts from the src
folder are run sequentially: train.py (line 18) and test.py (line
19). After the successful execution of the script phase, a message
“Successful.” is displayed on the screen (line 21).

2.2 Dataset
In this study, we use a dataset of open-source AI-enabled projects
from GitHub curated by Rzig et al. [57]. We chose this dataset
because all these projects use Travis CI and are primarily written
in Python. We focus on Python projects only because it has been
reported that Python is the most popular programming language
for the development of AI and ML-based solutions [31, 56, 61]. We
clone all projects and build them in the Travis CI platform using
the existing .travis.yml files. Once built, a project has one of the
following statuses:

Errored: An errored build has one or more errored job(s). A job
that encounters an issue during the install phase receives the
errored status.

Failed: A failed build has one or more failed job(s). A job that
encounters an issue during the script phase receives the failed
status.

Passed: A build receives the passed status when all jobs receive
the passed status.

Since the goal of our work is to study instability in these projects,
it is required that all projects are successfully built under all config-
uration settings described in Section 2.1. For example, if a project

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Rahman et al.

Table 1: Environment configurations compared against the baseline configuration: os:linux, dist:xenial, arch:amd64,
python:3.7. In each row, the variable that is different from the baseline is underlined.

Purpose Comparison Configuration Total
Configurations

Effect of operating system Linux vs MacOS os:osx, arch:amd64, python:3.7 2
Linux vs Windows os:windows, arch:amd64, python:3.7

Effect of distribution Linux-Xenial vs Linux-Bionic os:linux, dist:bionic, arch:amd64, python:3.7 2
Linux-Xenial vs Linux-Focal os:linux, dist:focal, arch:amd64, python:3.7

Effect of Python version Python 3.6 vs Python 3.7 os:linux, arch:amd64, python:3.6 2
Python 3.7 vs Python 3.8 os:linux, arch:amd64, python:3.8

Effect of CPU architecture AMD64 vs ARM64 os:linux, arch:arm64, python:3.7 1

Table 2: Overview of the 30 projects used in this study.

Avg. Std. Min. Med. Max.
Commits 437.33 393.24 13.00 331.50 1570.00
Forks 84.17 122.10 6.00 43.00 548.00
Stars 402.90 690.30 9.00 179.50 2949.00

Contributors 8.70 12.22 1.00 5.00 67.00

only runs on Linux, but not on MacOS and/or Windows, then we
cannot quantify instability due to the change in operating system
in this project. However, the majority of the projects are not devel-
oped with the aim of running them on all major operating systems,
CPU architectures, or multiple versions of Python. For example,
fer [24] is one of the projects in the dataset. The .travis.yml file
in this project shows that it was developed for and tested on Linux-
Xenial, AMD64 CPU architecture, and Python 3.6. While we tried
to edit the .travis.yml files of all the projects in the dataset to
incorporate all the configuration settings from Section 2.1, for the
majority of the projects we were unsuccessful in building them in
all those settings because open-source projects usually are devel-
oped and tested on a small subset of many possible configuration
settings. For example, several projects were built using Python 3.6
and when we tried to build them with Python 3.8 they failed due to
dependency issues and version mismatch between Python libraries.
30 projects returned a build status of passed under all configura-
tion settings under investigation. We move forward with these 30
projects for further analysis. Table 2 provides an overview of the
30 projects used in this study. The full list of studied projects can
be found in the replication package [5]. Building and running 30
projects on Travis CI took a total of 1185.87 build hours and cost us
1, 566, 775 build credits which is worth $940 excluding the monthly
subscription fee of $260.

2.3 Analysis of Instability
2.3.1 Evaluation Metrics: One of the reasons why the popularity
of AI-enabled systems has shown consistent growth over the last
few years is that these systems are becoming more and more ac-
curate in solving real-life problems. With the increasing amount
of high-quality data, these systems are expected to perform bet-
ter over time [29]. Therefore, the primary factor that determines
if an AI-enabled system is practically useful or not is how well
it performs in accomplishing a given task. The secondary factor

that influences a system’s practical usefulness is whether it can
accomplish a task within a reasonable amount of time. This implies
that like any other traditional software system, both model perfor-
mance and time are critical aspects of an AI-enabled system as well.
However, that is not all. Because AI-enabled systems are trained
on existing data, any changes in the data cause model performance
degradation over time [52]. This necessitates frequent retraining
of a system within a reasonable amount of time. Research in less
time-consuming training of AI-enabled systems has been an inter-
esting topic for a while [38, 42, 46, 67]. To further facilitate this
process of frequent improvement of a system by retraining it, many
online cloud platforms offer paid services that can be utilized. These
services provide users with different computation resources such as
high volumes of RAM, GPUs, and TPUs. Of course, these services
are not free and usually, a user needs to pay at an hourly rate [4, 8].
This brings in the third most important factor which is the expense
associated with building and running an AI-enabled system. In
our investigation of instability, we therefore pay attention to these
three factors as discussed below:

Model performance: This metric is determined from the model
performance of the AI component of the system. For each project,
we create a Python script named example.py. In this script, we im-
plement an example use case of respective projects. Some projects,
such as StarBoost [33], already have example scripts and/or note-
books that demo one or more key use cases of those projects. In
other projects where no example scripts/notebooks are available
(such as PyALCS [25]), we go through the tutorial sections of their
documentation and find example use cases. This is a crucial step
in our experimental setup because the example.py scripts define
and run ML tasks like regression and classification. The outputs of
these scripts are some numeric measures like F1-score (for classifi-
cation) and R2 (for regression). This numeric measure is the model
performance-related metric.

Processing time: This metric is obtained from the total process-
ing time (in minutes) taken to run a project in a given environment
configuration. In other words, it is the time taken to complete a
job in Travis CI. This includes spinning up the VM, installing re-
quired libraries and modules, building the project, and running the
example.py script.

Expense: This metric is obtained from the amount of Travis
CI credits spent on building and running the example script for
each project. The number of credits associated with processing a
project in Travis CI is calculated based on the amount of time it

The Impact of Environment Configurations on the Stability of AI-Enabled Systems EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

takes from spinning up the VM to executing the last phase in the
.travis.yml file. In other words, the longer it takes to complete
processing a project, the more credits are spent. The number of
credits required to run a project on a VM in the Travis CI envi-
ronment is determined only by the operating system of the VM
and nothing else. This means that credits are deducted at different
rates only when operating systems are different. The billing doc-
umentation from the official Travis CI website [7] states that the
number of credits spent per minute on running a VM with Linux,
Windows, and MacOS are respectively 10, 20, and 50. We realize
that processing time and expense are correlated and it may seem
redundant to study expense as a separate metric. However, the
scale of processing time and expense can be considerably different.
Let us take an arbitrary example. If a project takes 120 minutes to
complete on Linux and 121 minutes to complete on MacOS, the
processing time differs only by one unit, and a one-unit difference
may not be significant. However, when we consider the number of
credits spent, these values are 120 × 10 = 1200 and 121 × 50 = 6050
for Linux and MacOS, respectively. When we convert the number
of credits to the equivalent dollar amounts at a rate of 0.0006 dollars
per credit as calculated from [7], they are 1200 × 0.0006 = 0.72 and
6050 × 0.0006 = 3.63 for Linux and MacOS, respectively. As this
example demonstrates, there can be scenarios where the difference
in processing time between different settings is small and insignifi-
cant, however, the difference in cost can still be big and significant.
This is why we study processing time and expense as two separate
metrics in this study.

2.3.2 Result Analysis: We run each project 50 times under each
configuration shown in Table 1. The purpose behind choosing to
generate a distribution of 50 runs per configuration per project is
to mitigate random and unaccounted-for fluctuations in the met-
rics. For example, let us assume that we aim to determine how
the model performance of a project varies due to CPU architec-
ture. In this case, we generate a distribution of model performance
for the project by running it 50 times under the configuration of
os:linux, dist:xenial, arch:arm64 and python:3.7. This dis-
tribution is then compared against the distribution of model perfor-
mance generated from 50 runs of the same project under the baseline
configuration which is os:linux, dist:xenial, arch:amd64 and
python:3.7. As previously mentioned, there is always one and only
one environment variable that is different from the baseline con-
figuration. In this example, the only variable that is different from
the baseline configuration is arch, as underlined above. Once these
two distributions are generated, we then perform the following
steps:

Step 1: For each project, we calculate the percentage change as
follows:

𝑃 =
𝑚𝑜 −𝑚𝑏

| 𝑚𝑏 | × 100 (1)

The variables in the Equation 1 are defined as follows:

• 𝑚𝑏 is the arithmetic mean of a metric (model performance, pro-
cessing time, or expense) obtained from 50 runs of a project under
the baseline configuration.

• 𝑚𝑜 is the arithmetic mean of the same metric (model performance,
processing time, or expense) obtained from 50 runs of the project
under one of the other configurations from Table 1.

• 𝑃 is the percentage change between𝑚𝑏 and𝑚𝑜 . Any non-zero
value of 𝑃 indicates the existence of instability in the considering
metric.
The purpose of this step is to determine, on average across 50

runs, how much instability can be observed in each of the consid-
ering metrics.

Step 2: While Step 1 of our analysis gives us an overall view
of instability for each project, in this step, we aim to determine
whether or not any observed instability is statistically significant.
To determine the statistical significance of any observed instability,
we first perform the Mann-Whitney U test [48] to compare the two
distributions. We choose the Mann-Whitney U test as the test of
statistical significance because this nonparametric test does not
assume the data to be normal. We set the level of significance, 𝛼 =

0.05 for this test which represents the traditional 95% confidence
level [16]. Next, we determine the degree of difference, also known
as effect size, between the compared distributions using Cliff’s
delta [18]. Cliff’s delta, 𝑑 , is bounded between −1 and 1. Based
on the value of 𝑑 , the effect size can have one of the following
qualitative magnitudes as mentioned in [40, 41]:

Effect size =


Negligible, if |𝑑 | ≤ 0.147
Small, if 0.147 < |𝑑 | ≤ 0.33
Medium, if 0.33 < |𝑑 | ≤ 0.474
Large, if 0.474 < |𝑑 | ≤ 1

Note that we consider the observed instability between the gen-
erated distributions as statistically significant if the Mann-Whitney
U test returns a p-value of less than 0.05 and the effect size obtained
from Cliff’s delta is not negligible.

Finally, we categorize the studied projects into three categories
based on our two-step analysis previously described: (i) projects
that show zero instability, (ii) projects that show non-zero instabil-
ity which is statistically insignificant, and (iii) projects that show
non-zero instability which is statistically significant. While any
instability is undesirable, statistically significant instability is even
more concerning.

3 RQ1: (Operating System) How much
instability is introduced by changing the
operating system in AI-enabled systems?

As our first research question, we study instability with respect to
operating systems. We perform a comparative analysis among three
operating systems: Linux, MacOS, and Windows. Furthermore, we
also investigate whether instability can be observed in different
distributions of the same operating system. In this case, the compar-
ative analysis is performed among three Linux LTS distributions:
Xenial, Bionic, and Focal.

3.1 Instability with respect to Operating System
Setup: To study the effect of operating systems on the instability
in AI-enabled systems, we keep the CPU architecture and Python

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Rahman et al.

Model Performance Processing Time Expense

0

2

4

6

8

lo
g

(1
 +

 |P
er

ce
nt

ag
e

Ch
an

ge
|)

Linux vs MacOS
Linux vs Windows

Figure 1: Distributions of instability with respect to Operat-
ing Systems.

version constant to their baseline values and vary the choice of
operating system only.

Findings: We find that the majority of the projects show instability
across all three metrics due to operating systems. Figure 1 shows
the distributions of percentage change (𝑃) across all the studied
projects. Table 3 reports the number of projects falling under differ-
ent instability categories defined in Section 2.3. We observe that the
majority of the projects show changes in all three metrics due to
changes in operating systems. However, only a few projects show
instability in model performance with statistical significance. On
the other hand, almost all observed instability in processing time
and expense is statistically significant. Paying closer attention to the
breakdown of effect size for the projects with statistically significant
instability, we find that in almost all cases the observed instability
is large as shown in Table 4. We further find that there is a slight
increase in model performance (1.44%) on average when projects
are run on MacOS compared to Linux. On the other hand, model
performance drops on average by 4.21% when projects are run on
Windows. Although a slight increase in model performance may be
achieved on MacOS compared to Linux, this will require sacrifice
in processing time and expense with MacOS taking 137% longer
processing time and costing 1085.47% more money in comparison
to Linux.

Our findings imply that Linux is a faster and more cost-
effective operating system than bothMacOS andWindows al-
though MacOS produces slightly better model performance.

3.2 Instability with respect to Linux
Distribution

Setup: To study whether instability can be observed in different
distributions of the same operating system, we vary only the distri-
bution variable in the configuration settings and keep the operating
system, Python version, and CPU architecture constant to their
baseline values.

Findings: We find that, similar to operating systems, different Linux
distributions also cause varying degrees of instability with respect
to all three studied metrics. Figure 2 shows the distribution of
percentage change (𝑃) caused by changes in the Linux distribution
across the studied projects. Table 5 reveals that the majority of
the projects show some degree of instability between different

Model Performance Processing Time Expense

1

0

1

2

3

4

5

lo
g

(1
 +

 |P
er

ce
nt

ag
e

Ch
an

ge
|)

Xenial vs Bionic
Xenial vs Focal

Figure 2: Distributions of instability with respect to Linux
Distributions.

distributions of Linux. Although none of the observed instability
between Xenial and Bionic is statistically significant in any of the
metrics, the observed instability between Xenial and Focal shows a
different pattern. Between Xenial and Focal, three projects show a
statistically significant instability in model performance whereas
23 projects show a statistically significant instability in processing
time and expense. Most of the observed statistically significant
instability is large in terms of effect size as shown in Table 6. On
average a slight model performance gain of 2% can be achieved by
choosing Focal over Xenial, however, this comes with a 7% increase
in processing time and expense. This implies that newer versions
of Linux have increased processing time and thus higher expense.

Our findings indicate that even though the choice of Linux
distribution is unlikely to affect the model performance of
AI components significantly, it is very likely to affect the
processing time and associated cost of building and running
a system.

RQ1 Findings: Most projects show significant instabil-
ity in processing time and cost across operating systems,
while only a few exhibit notable differences in model per-
formance.

4 RQ2: (Python Version) How much does
changing the Python version introduce
instability in AI-enabled systems?

Setup: In this research question, we investigate if instability can
be observed when different versions of Python are used to run the
same system. We study the effect of Python version by keeping the
operating system, distribution, and CPU architecture constant to
their baseline values and only varying the Python version.

Findings: We find that most projects show some degree of instabil-
ity between Python versions. Figure 3 shows a similar pattern to
the observed instability in RQ1. That said, not all observed insta-
bility has statistical significance as shown in Table 7. Furthermore,
Table 8 reveals that any instability observed between Python 3.6
and Python 3.7 is insignificant in all metrics. On the other hand,
five projects with four large effect sizes and one small effect size
show significant instability between Python 3.7 and Python 3.8.

The Impact of Environment Configurations on the Stability of AI-Enabled Systems EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Table 3: Number of projects falling under different instability types due to differences in operating systems.

Metric Instability Type Linux vs MacOS Linux vs Windows

Model Performance
Zero instability 4 (13.33%) 4 (13.33%)

Non-zero but statistically insignificant 19 (63.33%) 20 (66.67%)
Non-zero and statistically significant 7 (23.33%) 6 (20%)

Processing Time
Zero instability 0 (0%) 0 (0%)

Non-zero but statistically insignificant 1 (3.33%) 0 (0%)
Non-zero and statistically significant 29 (96.67%) 30 (100%)

Expense
Zero instability 0 (0%) 0 (0%)

Non-zero but statistically insignificant 0 (0%) 0 (0%)
Non-zero and statistically significant 30 (100%) 30 (100%)

Table 4: Breakdown of effect size for projects with statistically significant instability due to different operating systems.

Linux vs MacOS Linux vs Windows
Small Medium Large Total Small Medium Large Total

Model Performance 1 0 6 7 0 0 6 6
Processing Time 0 0 29 29 1 0 29 30

Expense 0 0 30 30 0 0 30 30

Table 5: Number of projects falling under different instability types due to differences in Linux distributions.

Metric Instability Type Xenial vs Bionic Xenial vs Focal

Model Performance
Zero instability 7 (23.33%) 6 (20%)

Non-zero but statistically insignificant 23 (76.67%) 21 (70%)
Non-zero and statistically significant 0 (0%) 3 (10%)

Processing Time
Zero instability 0 (0%) 0 (0%)

Non-zero but statistically insignificant 30 (100%) 7 (23.33%)
Non-zero and statistically significant 0 (0%) 23 (76.67%)

Expense
Zero instability 0 (0%) 0 (0%)

Non-zero but statistically insignificant 30 (100%) 7 (23.33%)
Non-zero and statistically significant 0 (0%) 23 (76.67%)

Table 6: Breakdown of effect size for projects with statistically significant instability between different Linux distributions.

Xenial vs Bionic Xenial vs Focal
Small Medium Large Total Small Medium Large Total

Model Performance 0 0 0 0 1 0 2 3
Processing Time 0 0 0 0 4 1 18 23

Expense 0 0 0 0 4 1 18 23

An even higher degree of instability can be observed in processing
time and expense with a total of 24 projects showing significant
instability with 19 large, two medium, and three small effect sizes.
Moreover, choosing Python 3.6 over Python 3.7 causes a 0.52% drop
in model performance, and choosing Python 3.8 over Python 3.7
causes a 0.73% drop in model performance on average. To build and
run a project it takes 25% longer using Python 3.6 and 5.3% longer
using Python 3.8. Expense follows the same pattern as processing
time.

Our findings show that the choice of Python version can
cause instability, likely due to differences in library versions

during installation. Newer Python versions may install up-
dated libraries with added features, increasing installation
time, while older versions may lead to performance drops
and longer processing due to outdated dependencies.

RQ2 Findings: Python 3.6 and 3.7 produce identical results
across all metrics in the studied projects. However, between
Python 3.7 and 3.8, most projects experience significant
instability in processing time and costs, with only a few
showing instability in model performance.

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Rahman et al.

Table 7: Number of projects falling under different instability types due to differences in Python versions.

Metric Instability Type Python 3.6 vs Python 3.7 Python 3.7 vs Python 3.8

Model Performance
Zero instability 6 (20%) 6 (20%)

Non-zero but statistically insignificant 24 (80%) 19 (63.33%)
Non-zero and statistically significant 0 (0%) 5 (16.67%)

Processing Time
Zero instability 0 (0%) 0 (0%)

Non-zero but statistically insignificant 30 (100%) 6 (20%)
Non-zero and statistically significant 0 (0%) 24 (80%)

Expense
Zero instability 0 (0%) 0 (0%)

Non-zero but statistically insignificant 30 (100%) 6 (20%)
Non-zero and statistically significant 0 (0%) 24 (80%)

Table 8: Breakdown of effect size for projects with statistically significant instability between different Python versions.

Python 3.6 vs Python 3.7 Python 3.7 vs Python 3.8
Small Medium Large Total Small Meidum Large Total

Model Performance 0 0 0 0 1 0 4 5
Processing Time 0 0 0 0 3 2 19 24

Expense 0 0 0 0 3 2 19 24

Model Performance Processing Time Expense

0

2

4

6

lo
g

(1
 +

 |P
er

ce
nt

ag
e

Ch
an

ge
|)

Python 3.6 vs Python 3.7
Python 3.7 vs Python 3.8

Figure 3: Distributions of instability with respect to Python
versions.

5 RQ3: (CPU Architecture) How much does
changing the CPU architecture introduce
instability in AI-enabled systems?

Setup: We study the effect of CPU architecture on instability by
keeping the operating system, distribution, and Python version
constant to their baseline values and only varying CPU architecture
configuration.

Findings: We find that CPU architectures also cause varying de-
grees of instability in all three metrics. Figure 4 summarizes the
instability pattern in terms of percentage changes between AMD64
and ARM64 CPU architectures. Similar to the findings from RQ1
and RQ2, most of the observed instability in model performance is
insignificant, whereas, in processing time and expense, the observed
instability is significant in the majority of the studied projects. Ta-
ble 10 shows that out of six projects with significant instability in
model performance, five show a large effect size and one shows a
small effect size. In processing time and expense two, one and 25

projects show small, medium, and large effect sizes respectively
among the 28 projects that differ significantly between AMD64 and
ARM64 CPU architectures. In all three metrics, the ARM64 CPU
performs poorly compared to the AMD64 CPU with a slight drop
of 0.62% in model performance costing 25% more time and money,
on average. We conjecture that the observed instability between
AMD64 and ARM64 CPU architectures may be due to design dif-
ferences. ARM64 has a much smaller instruction set compared to
AMD64whichmight require ARM64 to take longer to performmore
complex operations [13]. AMD64 being the most common CPU ar-
chitecture has more software support compared to ARM64 CPUs.
All these can negatively affect the model performance, processing
time, and expense of building and running AI-enabled systems on
ARM64 CPUs.

We can draw a similar conclusion for RQ3 to what we ob-
served and concluded in RQ1 and RQ2. Instability in model
performance is less common than instability in processing
time and associated costs. Therefore, the most optimized
hardware configuration can significantly reduce processing
time and costs because in the majority of the cases, the ob-
served statistically significant instability is large between
AMD64 and ARM64 CPU architectures.

RQ3 Findings: CPU architecture has a major impact on
processing time and costs in most projects, with a large
effect size in these metrtics. While less common, the choice
of CPU architecture can occasionally cause instability in
model performance.

The Impact of Environment Configurations on the Stability of AI-Enabled Systems EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Table 9: Number of projects falling under different instability types due to differences in CPU architectures.

Metric Instability Type AMD64 vs ARM64

Model Performance
Zero instability 4 (13.33%)

Non-zero but statistically insignificant 20 (66.67%)
Non-zero and statistically significant 6 (20%)

Processing Time
Zero instability 0 (0%)

Non-zero but statistically insignificant 2 (6.67%)
Non-zero and statistically significant 28 (93.33%)

Expense
Zero instability 0 (0%)

Non-zero but statistically insignificant 2 (6.67%)
Non-zero and statistically significant 28 (93.33%)

Table 10: Breakdown of effect size for projects with statisti-
cally significant instability between different CPU architec-
tures.

AMD64 vs ARM64
Small Medium Large Total

Model Performance 1 0 5 6
Processing Time 2 1 25 28

Expense 2 1 25 28

1 0 1 2 3 4 5 6
log (1 + |Percentage Change|)

Model
Performance

Processing
Time

Expense

AMD64 vs ARM64

Figure 4: Distributions of instability with respect to CPU
architectures.

6 Discussion
6.1 Interpretation
AI components are becoming a core part of almost all software
systems nowadays. Our analysis shows that these systems suffer
from instability in all three metrics we studied (model performance,
processing time, and expense) although this finding is not consistent
across all projects under investigation. Although existing work re-
ported the existence of inconsistent and non-deterministic behavior
of AI-enabled systems due to different factors such as choice of
frameworks [32, 70], underspecification [20], and CPU multithread-
ing [68], ours is the first work to investigate the effect of environ-
ment configurations on the systems’ stability to the best of our
knowledge. We find that the choice of operating system including
the distribution of an operating system, version of Python, and CPU
architecture indeed introduce instability. The degree of instability
differs from project to project. Four projects, namely Seglearn [28],

SMOTE-variants [63], pyGLMnet [55], and pymfe [26], consistently
show stable behavior across all three studied metrics with respect
to all the configuration settings under investigation. However, our
qualitative analysis did not reveal any probable reason behind why
this might be happening. Comparing these four projects against
other 26 projects that show some degree of instability in at least
one of the studied metrics did not show any distinct feature about
them. While performing our qualitative analysis of the codebase of
all projects, we did not notice anything different about the imple-
mentations of these four projects either, such as setting a value of
the random_state setting internally within the implementations
forcing an operation to repeatedly produce the same result. There-
fore, we couldn’t determine why the observed instability varies
between projects without further investigation which is out of the
scope of the paper and requires its dedicated study.

6.2 Implications
Firstly, our results imply that to be able to determine the existence
and degree of instability in a project, developers must build and
run the project under various configuration settings. Furthermore,
our findings indicate that even within a project, not all metrics
show an equal degree of instability. Instability is more prominent in
processing time and associated costs than the model performance
of an AI component. This can hurt a project’s development lifecycle
given that AI components like ML models need to be retrained
frequently because they suffer from model performance decay due
to data drift [52] and concept drift [45] over time. If the (re)training
of an AI component takes a very long time under a given config-
uration setting, it can reduce the frequent update of the system
and eventually can lead to a model performance drop. Moreover, a
longer processing time usually implies higher costs.

Secondly, while instability in processing time and associated
expenses impacts only the project internally (such as longer devel-
opment time and an unnecessary increase in development efforts),
the instability in model performance can impact the end-users of
the project. This can potentially cause a financial burden for a
company. The instability in model performance can be reduced by
adhering to the practice of dev/prod parity which is an important
principle of 12-factor apps [36, 66]. Therefore, our findings suggest
that an AI-enabled system should be built and run on different
configuration settings first so that the developers can determine

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Rahman et al.

the environment configuration on which the most optimized sys-
tem can be developed. This step should follow the dev/prod parity
principle to ensure the stability of the system. Based on existing
literature [37], it is not yet a common practice in the industry to
build and run a system on multiple different configuration settings.
Our findings imply that determining the best configuration setting
with respect to the metric(s) of interest should be an important step
in the development workflow.

7 Threats to Validity
Internal Validity: There are projects in our dataset that are devel-
oped for more than one task. However, we only run one example
task as part of our example script for each project to perform an
analysis of the outputs. It is entirely possible that the example tasks
may not represent the actual degree of instability associated with
the project. To mitigate this issue, we only choose an example task
that is part of the official documentation of each project with a
naive assumption that the developers would choose those examples
in such a way that they are a true representation of the overall
functionality and model performance of the project.

External Validity: Firstly, we cannot guarantee the generalizability
of our findings. We chose a finite set of configuration variables with
a finite set of possible values for each of the variables under study.
However, we acknowledge that there are other options for each of
these variables that we do not investigate. For example, Linux has
many distributions other than Xenial, Bionic, and Focal. Python
has many other versions besides the ones we studied. Therefore,
we do not claim that our findings can be generalized beyond what
we investigated. The reason behind limiting our choices of options
for the configuration variables is the amount of time and money
required to run experiments in Travis CI. Furthermore, for each
new configuration setting, we would have had to run 50 iterations
because of our experimental design. Doing so was not practically
feasible due to constraints on time and money.

Secondly, we acknowledge that the dataset with 30 projects falls
at the smaller end for quantitative experiments. As mentioned in
Section 2.2, we started with a much bigger set of projects, how-
ever, the biggest requirement of our experimental design was that
a project needed to successfully build and run on all configurations
listed in Table 1. Only 30 projects met that requirement. That said,
these 30 projects represent a diverse set of applications in terms of
size, popularity, and activity as evident from Table 2. Furthermore,
our manual analysis revealed that these projects represent the im-
plementation of diverse ML algorithms and applications including
natural language processing (such as Doc2Vec [23]), time-series
analysis (such as Seglearn [28]), and recommender systems (such
as Spotlight [27]).

8 Related Work
Nondeterminism in AI:. Uncertain nature of AI components has
been a topic of research in the domain of AI for quite some time. It
has gained more traction with the popularity of deep learning sys-
tems. Most of the existing works on the non-deterministic nature
of AI components focus on deep learning systems. For example,
Zhuang et al. [54, 70] studied the uncertain nature of training deep
learning models. They reported that the choice of tools can affect

the behavior of an AI component which can potentially affect AI
safety. Guo et al. [32] performed an empirical study on the devel-
opment and deployment of deep learning solutions. They reported
that frameworks and platforms can cause the model performance
of a system to decline. Crane [19] studied the challenges in the
reproducibility of published results. This study reported that the
consistent use of random seeds can help mitigate the issue of lack
of reproducibility. Xiao et al. [68] reported the impact of CPU multi-
threading and how it impacts the training of deep learning systems.

Instability in Software: Instability in software systems has been
explored in various contexts, including cloud infrastructure, sys-
tem growth, and reproducibility. Some studies focused on detect-
ing instability or proposing design practices to reduce it [21, 22].
Others found that instability can increase with codebase size [51],
or that stable domain abstractions help maintain structural con-
sistency [47]. Additionally, researchers have identified frequently
modified system regions as unstable and proposed methods to pri-
oritize them for restructuring [9, 11].

AI-components in Software: Many recent studies have investigated
the pros and cons of having AI components embedded in soft-
ware systems. Masuda et al. [50] described practices for the evalua-
tion and improvement of the software quality of ML applications.
Washizaki et al. [64] proposed architecture and design patterns for
ML systems. An extensive study on testing ML applications was
performed in [69] by Zhang et al.. Scully et al. [59] studied hidden
technical debt in ML systems whereas Obrien et al. [53] studied
self-admitted technical debts in ML software.

Our work is different from the above studies in that ours is the
first study to quantify the degree of instability in AI-enabled systems
in terms of model performance, processing time, and expense as a
result of changes in configuration settings of three key environment
variables (operating system, Python version, and CPU architecture).

9 Conclusion and Future Work
In this paper, we investigated how AI-enabled software systems
show instability in terms of three metrics: model performance, pro-
cessing time, and expense of building and running a system. We
performed our study with respect to three environment variables,
namely operating systems including the distributions of an oper-
ating system, Python version, and CPU architecture. Our findings
indicate that although a majority of the projects show some de-
gree of instability, the degrees vary from project to project. The
instability is more statistically significant for processing time and
expense than the model performance of an AI component. Because
the observed instability patterns vary from project to project, we
conclude that to serve the end users the most accurate AI solutions,
it is crucial to run and test the AI components in different environ-
ment configurations. This practice can facilitate the identification
of the environment where themost optimized system can be built
which should follow adherence to the dev/prod parity principle to
obtain themost stable system. We acknowledge that predicting
instability without testing different configurations could save time
and effort, making it a valuable topic for future research. Another
potential study could explore the causes of observed instability,
which we leave for future work.

The Impact of Environment Configurations on the Stability of AI-Enabled Systems EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

References
[1] 2014. ISO/IEC 25000:2014 Systems and software engineering — Systems and

software Quality Requirements and Evaluation (SQuaRE) — Guide to SQuaRE.
https://www.iso.org/obp/ui/#iso:std:iso-iec:25000:ed-2:v1:en. [Accessed 09-01-
2025].

[2] 2024. Desktop Operating System Market Share Worldwide | Statcounter Global
Stats. https://gs.statcounter.com/os-market-share/desktop/worldwide. (Accessed
on 06/07/2024).

[3] 2024. Domain-specific language. https://en.wikipedia.org/wiki/Domain-specific_
language

[4] 2024. EC2 On-Demand Instance Pricing – Amazon Web Services. https://aws.
amazon.com/ec2/pricing/on-demand/. (Accessed on 06/07/2024).

[5] 2024. Replication package: scripts and data. https://anonymous.4open.science/r/
variability_replication_package-F175/

[6] 2024. Status of Python versions. https://devguide.python.org/versions/. (Accessed
on 06/07/2024).

[7] 2024. Travis CI Documentation. https://docs.travis-ci.com/user/billing-
overview/

[8] 2024. VM instance pricing | Compute Engine: Virtual Machines (VMs) | Google
Cloud. https://cloud.google.com/compute/vm-instance-pricing. (Accessed on
06/07/2024).

[9] Bente CD Anda, Dag IK Sjøberg, and Audris Mockus. 2008. Variability and
reproducibility in software engineering: A study of four companies that developed
the same system. IEEE Transactions on Software Engineering 35, 3 (2008), 407–429.

[10] Hrvoje Belani, Marin Vukovic, and Željka Car. 2019. Requirements engineering
challenges in building AI-based complex systems. In 2019 IEEE 27th International
Requirements Engineering Conference Workshops (REW). IEEE, 252–255.

[11] Jennifer Bevan and E James Whitehead Jr. 2003. Identification of Software
Instabilities.. In WCRE, Vol. 3. 134.

[12] Dileep Bhandarkar. 1997. RISC versus CISC: a tale of two chips. ACM SIGARCH
Computer Architecture News 25, 1 (1997), 1–12.

[13] Dileep Bhandarkar and Douglas W Clark. 1991. Performance from architecture:
comparing a RISC and a CISC with similar hardware organization. In Proceedings
of the fourth international conference on Architectural support for programming
languages and operating systems. 310–319.

[14] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. 2013. Power
struggles: Revisiting the RISC vs. CISC debate on contemporary ARM and x86
architectures. In 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 1–12.

[15] Justus Bogner, Roberto Verdecchia, and Ilias Gerostathopoulos. 2021. Character-
izing technical debt and antipatterns in AI-based systems: A systematic mapping
study. In 2021 IEEE/ACM International Conference on Technical Debt (TechDebt).
IEEE, 64–73.

[16] David Chavalarias, Joshua David Wallach, Alvin Ho Ting Li, and John PA Ioanni-
dis. 2016. Evolution of reporting P values in the biomedical literature, 1990-2015.
Jama 315, 11 (2016), 1141–1148.

[17] Xinghan Chen, Ling-Hong Hung, Robert Cordingly, and Wes Lloyd. 2023. X86
vs. ARM64: An Investigation of Factors Influencing Serverless Performance. In
Proceedings of the 9th International Workshop on Serverless Computing. 7–12.

[18] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological bulletin 114, 3 (1993), 494.

[19] Matt Crane. 2018. Questionable answers in question answering research: Repro-
ducibility and variability of published results. Transactions of the Association for
Computational Linguistics 6 (2018), 241–252.

[20] Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak
Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein,
Matthew D Hoffman, et al. 2022. Underspecification presents challenges for
credibility in modern machine learning. Journal of Machine Learning Research
23, 226 (2022), 1–61.

[21] Olga Vladimirovna Datskova. 2017. Detection and Analysis of Operational Insta-
bility within Distributed Computing Environments. Ph. D. Dissertation. University
of Houston.

[22] Cornelia Davis. 2017. Realizing software reliability in the face of infrastructure
instability. IEEE Cloud Computing 4, 5 (2017), 34–40.

[23] Doc2Vec Developers. 2018. Doc2Vec: Long(er) text representation and classifi-
cation using Doc2Vec embeddings. https://github.com/ibrahimsharaf/doc2vec.
[Accessed 22-01-2025].

[24] Fer Developers. 2024. FER: Facial Expression Recognition with a deep neural
network as a PyPI package — github.com. https://github.com/JustinShenk/fer.
[Accessed 27-05-2024].

[25] Pyalcs Developers. 2018. PyALCS: Anticipatory Learning Classifier Systems in
Python. https://github.com/ParrotPrediction/pyalcs. [Accessed 30-12-2023].

[26] Pymfe Developers. 2019. Pymfe: Python Meta-Feature Extractor package. https:
//github.com/ealcobaca/pymfe. [Accessed 22-01-2025].

[27] Spotlight Developers. 2017. Spotlight: Deep recommender models using PyTorch.
https://github.com/maciejkula/spotlight. [Accessed 22-01-2025].

[28] Seglearn Developers. 2018. Seglearn: Python module for machine learning time
series. https://github.com/dmbee/seglearn. [Accessed 21-01-2025].

[29] Pedro Domingos. 2012. A few useful things to know about machine learning.
Commun. ACM 55, 10 (2012), 78–87.

[30] Michael Felderer and Rudolf Ramler. 2021. Quality assurance for AI-based sys-
tems: Overview and challenges (introduction to interactive session). In Software
Quality: Future Perspectives on Software Engineering Quality: 13th International
Conference, SWQD 2021, Vienna, Austria, January 19–21, 2021, Proceedings 13.
Springer, 33–42.

[31] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. 2020. The
state of the ml-universe: 10 years of artificial intelligence & machine learning
software development on github. In Proceedings of the 17th International conference
on mining software repositories. 431–442.

[32] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,
Jianjun Zhao, and Xiaohong Li. 2019. An empirical study towards characterizing
deep learning development and deployment across different frameworks and
platforms. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 810–822.

[33] Max Halford. 2018. StarBoost. https://github.com/MaxHalford/starboost. [Ac-
cessed 30-12-2023].

[34] Barbara Hammer and Thomas Villmann. 2007. How to process uncertainty in
machine learning?. In ESANN’2007 proceedings - European Symposium on Artificial
Neural Networks, Bruges (Belgium), 25-27 April 2007. 79–90.

[35] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM international conference on automated software
engineering. 426–437.

[36] Kevin Hoffman. 2016. Beyond the Twelve-Factor App. O’Reilly Media, Inc.
[37] Meenu Mary John, Helena Holmström Olsson, and Jan Bosch. 2021. Architecting

AI Deployment: A Systematic Review of State-of-the-art and State-of-practice
Literature. In Software Business: 11th International Conference, ICSOB 2020, Karl-
skrona, Sweden, November 16–18, 2020, Proceedings 11. Springer, 14–29.

[38] Akanksha Kavikondala, Vivek Muppalla, K Krishna Prakasha, and Vasundhara
Acharya. 2019. Automated retraining of machine learning models. International
Journal of Innovative Technology and Exploring Engineering 8, 12 (2019), 445–452.

[39] Jeremy Kedziora. 2024. Prediction Instability in Machine Learning Ensembles.
arXiv preprint arXiv:2407.03194 (2024).

[40] SayedHassan Khatoonabadi, Diego Elias Costa, Rabe Abdalkareem, and Emad Shi-
hab. 2023. On wasted contributions: understanding the dynamics of contributor-
abandoned pull requests–a mixed-methods study of 10 large open-source projects.
ACM Transactions on Software Engineering and Methodology 32, 1 (2023), 1–39.

[41] SayedHassan Khatoonabadi, Diego Elias Costa, SuhaibMujahid, and Emad Shihab.
2023. Understanding the Helpfulness of Stale Bot for Pull-Based Development:
An Empirical Study of 20 Large Open-Source Projects. ACM Transactions on
Software Engineering and Methodology 33, 2 (2023), 1–43.

[42] Junyaup Kim and Simon S Woo. 2022. Efficient two-stage model retraining for
machine unlearning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 4361–4369.

[43] Michael Kläs and Anna Maria Vollmer. 2018. Uncertainty in machine learning
applications: A practice-driven classification of uncertainty. In Computer Safety,
Reliability, and Security: SAFECOMP 2018 Workshops, ASSURE, DECSoS, SASSUR,
STRIVE, andWAISE, Västerås, Sweden, September 18, 2018, Proceedings 37. Springer,
431–438.

[44] Benjamin Kompa, Jasper Snoek, and Andrew L Beam. 2021. Second opinion
needed: communicating uncertainty in medical machine learning. NPJ Digital
Medicine 4, 1 (2021), 4.

[45] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2018.
Learning under concept drift: A review. IEEE transactions on knowledge and data
engineering 31, 12 (2018), 2346–2363.

[46] Ananth Mahadevan and Michael Mathioudakis. 2024. Cost-aware retraining for
machine learning. Knowledge-Based Systems 293 (2024), 111610.

[47] Sayyed G Maisikeli. 2018. Measuring architectural stability and instability in the
evolution of software systems. In 2018 Fifth HCT Information Technology Trends
(ITT). IEEE, 263–275.

[48] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[49] Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien
Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner. 2022. Soft-
ware engineering for AI-based systems: a survey. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31, 2 (2022), 1–59.

[50] Satoshi Masuda, Kohichi Ono, Toshiaki Yasue, and Nobuhiro Hosokawa. 2018.
A survey of software quality for machine learning applications. In 2018 IEEE
International conference on software testing, verification and validation workshops
(ICSTW). IEEE, 279–284.

[51] Ali HMresa andAbdussalamNuri Baryun. 2021. Assessing Growth and Instability
of Open Source Software Systems. In 2021 IEEE 1st International Maghreb Meeting
of the Conference on Sciences and Techniques of Automatic Control and Computer

https://www.iso.org/obp/ui/#iso:std:iso-iec:25000:ed-2:v1:en
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://anonymous.4open.science/r/variability_replication_package-F175/
https://anonymous.4open.science/r/variability_replication_package-F175/
https://devguide.python.org/versions/
https://docs.travis-ci.com/user/billing-overview/
https://docs.travis-ci.com/user/billing-overview/
https://cloud.google.com/compute/vm-instance-pricing
https://github.com/ibrahimsharaf/doc2vec
https://github.com/JustinShenk/fer
https://github.com/ParrotPrediction/pyalcs
https://github.com/ealcobaca/pymfe
https://github.com/ealcobaca/pymfe
https://github.com/maciejkula/spotlight
https://github.com/dmbee/seglearn
https://github.com/MaxHalford/starboost

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Rahman et al.

Engineering MI-STA. IEEE, 398–406.
[52] Kevin Nelson, George Corbin, Mark Anania, Matthew Kovacs, Jeremy Tobias,

and Misty Blowers. 2015. Evaluating model drift in machine learning algorithms.
In 2015 IEEE Symposium on Computational Intelligence for Security and Defense
Applications (CISDA). IEEE, 1–8.

[53] David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad Shihab,
and Hridesh Rajan. 2022. 23 shades of self-admitted technical debt: an empirical
study onmachine learning software. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 734–746.

[54] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems and
opportunities in training deep learning software systems: An analysis of vari-
ance. In Proceedings of the 35th IEEE/ACM international conference on automated
software engineering. 771–783.

[55] pyGLMnet Developers. 2016. pyGLMnet: Python implementation of elastic-net
regularized generalized linear models. https://github.com/glm-tools/pyglmnet.
[Accessed 22-01-2025].

[56] Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine learning
in python: Main developments and technology trends in data science, machine
learning, and artificial intelligence. Information 11, 4 (2020), 193.

[57] Dhia Elhaq Rzig, Foyzul Hassan, Chetan Bansal, and Nachiappan Nagappan.
2022. Characterizing the Usage of CI Tools in ML Projects. In Proceedings of the
16th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. 69–79.

[58] Karthikeyan Sankaralingam, JaikrishnanMenon, and Emily Blem. 2013. A detailed
analysis of contemporary arm and x86 architectures. Technical Report.

[59] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. Advances
in neural information processing systems 28 (2015).

[60] Joseph P Simmons, Leif D Nelson, and Uri Simonsohn. 2011. False-positive psy-
chology: Undisclosed flexibility in data collection and analysis allows presenting

anything as significant. Psychological science 22, 11 (2011), 1359–1366.
[61] Sarvar Sultonov. 2023. IMPORTANCE OF PYTHON PROGRAMMING LAN-

GUAGE IN MACHINE LEARNING. International Bulletin of Engineering and
Technology 3, 9 (2023), 28–30.

[62] Cecilia Summers and Michael J Dinneen. 2021. Nondeterminism and instability
in neural network optimization. In International Conference on Machine Learning.
PMLR, 9913–9922.

[63] Smote variants Developers. 2018. Smote-variants: A collection of 85 minority
oversampling techniques (SMOTE) for imbalanced learning with multi-class
oversampling andmodel selection feature. https://github.com/analyticalmindsltd/
smote_variants. [Accessed 21-01-2025].

[64] Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc.
2019. Studying software engineering patterns for designing machine learning
systems. In 2019 10th International Workshop on Empirical Software Engineering
in Practice (IWESEP). IEEE, 49–495.

[65] Jelte M Wicherts, Coosje LS Veldkamp, Hilde EM Augusteijn, Marjan Bakker,
Robbie Van Aert, and Marcel ALM Van Assen. 2016. Degrees of freedom in
planning, running, analyzing, and reporting psychological studies: A checklist to
avoid p-hacking. Frontiers in psychology (2016), 1832.

[66] Adam Wiggins. 2017. The twelve-factor app.
[67] Yinjun Wu, Edgar Dobriban, and Susan Davidson. 2020. Deltagrad: Rapid retrain-

ing of machine learning models. In International Conference on Machine Learning.
PMLR, 10355–10366.

[68] Guanping Xiao, Jun Liu, Zheng Zheng, and Yulei Sui. 2021. Nondeterministic
Impact of CPU Multithreading on Training Deep Learning Systems.. In ISSRE.
557–568.

[69] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering 48, 1
(2020), 1–36.

[70] Donglin Zhuang, Xingyao Zhang, Shuaiwen Song, and Sara Hooker. 2022. Ran-
domness in neural network training: Characterizing the impact of tooling. Pro-
ceedings of Machine Learning and Systems 4 (2022), 316–336.

https://github.com/glm-tools/pyglmnet
https://github.com/analyticalmindsltd/smote_variants
https://github.com/analyticalmindsltd/smote_variants

	Abstract
	1 Introduction
	2 Methodology and Background
	2.1 Environment Configurations in Travis CI
	2.2 Dataset
	2.3 Analysis of Instability

	3 RQ1: (Operating System) How much instability is introduced by changing the operating system in AI-enabled systems?
	3.1 Instability with respect to Operating System
	3.2 Instability with respect to Linux Distribution

	4 RQ2: (Python Version) How much does changing the Python version introduce instability in AI-enabled systems?
	5 RQ3: (CPU Architecture) How much does changing the CPU architecture introduce instability in AI-enabled systems?
	6 Discussion
	6.1 Interpretation
	6.2 Implications

	7 Threats to Validity
	8 Related Work
	9 Conclusion and Future Work
	References

